Menu Walk reactor chemistry, tips : using right klick then new tab
Home | Setting Handphone & Computer | Setting CDMA | Setting GPRS & MMS | be positif | indonesian child | about islam | ilmu pengetahuan | Free Acces Internet

Silent Menu reactor chemistry




Not Find the word,
Search by Goooooogle search
Google

Monday, August 6, 2007

Natural nuclear reactors

Although mankind has only tamed nuclear power recently, the first nuclear reactors were naturally occurring. A natural nuclear fission reactor can occur under certain circumstances that mimic the conditions in a constructed reactor.[7] Fifteen natural fission reactors have so far been found in three separate ore deposits at the Oklo mine in Gabon, West Africa. First discovered in 1972 by French physicist Francis Perrin, they are collectively known as the Oklo Fossil Reactors. These reactors ran for approximately 150 million years, averaging 100 kW of power output during that time. The concept of a natural nuclear reactor was theorized as early as 1956 by Paul Kuroda at the University of Arkansas[8][9]

Such reactors can no longer form on Earth: radioactive decay over this immense time span has reduced the proportion of U-235 in naturally occurring uranium to below the amount required to sustain a chain reaction.

The natural nuclear reactors formed when a uranium-rich mineral deposit became inundated with groundwater that acted as a neutron moderator, and a strong chain reaction took place. The water moderator would boil away as the reaction increased, slowing it back down again and preventing a meltdown. The fission reaction was sustained for hundreds of thousands of years.

These natural reactors are extensively studied by scientists interested in geologic radioactive waste disposal. They offer a case study of how radioactive isotopes migrate through the earth's crust. This is a significant area of controversy as opponents of geologic waste disposal fear that isotopes from stored waste could end up in water supplies or be carried into the environment.

Read More.....!

Fueling of nuclear reactors

The amount of energy in the reservoir of nuclear fuel is frequently expressed in terms of "full-power days," which is the number of 24-hour periods (days) a reactor is scheduled for operation at full power output for the generation of heat energy. The number of full-power days in a reactor's operating cycle (between refueling outage times) is related to the amount of fissile uranium-235 (U-235) contained in the fuel assemblies at the beginning of the cycle. A higher percentage of U-235 in the core at the beginning of a cycle will permit the reactor to be run for a greater number of full-power days.

At the end of the operating cycle, the fuel in some of the assemblies is "spent," and is discharged and replaced with new (fresh) fuel assemblies. Although in practice, it is the buildup of reaction poisons in nuclear fuel that determines the lifetime of nuclear fuel in a reactor; long before all possible fissions have taken place, the buildup of long-lived neutron absorbing fission products damps out the chain reaction. The fraction of the reactor's fuel core replaced during refueling is typically one-fourth for a boiling-water reactor and one-third for a pressurized-water reactor.

Not all reactors need to be shut down for refueling; for example, pebble bed reactors, RBMK reactors, molten salt reactors, Magnox, AGR and CANDU reactors allow fuel to be shifted through the reactor while it is running. In a CANDU reactor, this also allows individual fuel elements to be moved about within the reactor core to places that are best suited to the amount of U-235 in the fuel element.

The amount of energy extracted from nuclear fuel is called its "burn up," which is expressed in terms of the heat energy produced per initial unit of fuel weight. Burn up is commonly expressed as megawatt days thermal per metric ton of initial heavy metal.

Read More.....!

Nuclear fuel cycle

Main article: Nuclear fuel cycle
Thermal reactors generally depend on refined and enriched uranium. Some nuclear reactors can operate with a mixture of plutonium and uranium (see MOX). The process by which uranium ore is mined, processed, enriched, used, possibly reprocessed and disposed of is known as the nuclear fuel cycle.

Under 1% of the uranium found in nature is the easily fissionable U-235 isotope and as a result most reactor designs require enriched fuel. Enrichment involves increasing the percentage of U-235 and is usually done by means of gaseous diffusion or gas centrifuge. The enriched result is then converted into uranium dioxide powder, which is pressed and fired onto pellet form. These pellets are stacked into tubes which are then sealed and called fuel rods. Many of these fuel rods are used in each nuclear reactor.

Most BWR and PWR commercial reactors use uranium enriched to about 4% U-235, and some commercial reactors with a high neutron economy do not require the fuel to be enriched at all (that is, they can use natural uranium). According to the International Atomic Energy Agency there are at least 100 research reactors in the world which use highly enriched, weapons-grade uranium (90% enrichment) as their fuel. Because of the risk of theft of this fuel, which could be potentially turned into a nuclear weapon without unsurmountable difficulty, for many years there have been many campaigns to attempt to convert reactors of this type to run on low -enriched uranium which poses less of a direct proliferation threat.[6]

It should be noted that fissionable U-235 and non-fissionable U-238 are both used in the fission process. U-235 is fissionable by thermal (i.e. slow-moving) neutrons. A thermal neutron is one which is moving about the same speed as the atoms around it. Since all atoms vibrate proportional to their absolute temperature, a thermal neutron has the best opportunity to fission U-235 when it is moving at this same vibrational speed. On the other hand, U-238 is more likely to capture a neutron when the neutron is moving very fast. This U-239 atom will soon decay into plutonium-239, which is another fuel. Pu-239 is a viable fuel and must be accounted for even when a highly enriched uranium fuel is used. Plutonium fissions will dominate the U-235 fissions in some reactors, especially after the initial loading of U-235 is spent. Plutonium is fissionable with both fast and thermal neutrons, which make it ideal for either nuclear reactors or nuclear bombs.

Most reactor designs in existence are thermal reactors and typically use water as a neutron moderator (moderator means that it slows down the neutron to a thermal speed) and as a coolant. But in a fast breeder reactor, some other kind of coolant is used which will not moderate or slow the neutrons down much. This enables fast neutrons to dominate, which can effectively be used to constantly replenish the fuel supply. By merely placing cheap unenriched uranium into such a core, the non-fissionable U-238 will be turned into Pu-239, "breeding" fuel.

Read More.....!

Fusion reactors

Controlled nuclear fusion could in principle be used in fusion power plants to produce power without the complexities of handling actinides, but significant scientific and technical obstacles remain. Several fusion reactors have been built, but as yet none has 'produced' more thermal energy than electrical energy consumed. Despite research having started in the 1950s, no commercial fusion reactor is expected before 2050. The ITER project is currently leading the effort to commercialize fusion power.

Read More.....!

Generation V+ reactors

Designs which are theoretically possible, but which are not being actively considered or researched at present. Though such reactors could be built with current or near term technology, they trigger little interest for reasons of economics, practicality, or safety.

Liquid Core reactor. A closed loop liquid core nuclear rocket, where the fissile material is molten uranium cooled by a working gas pumped in through holes in the base of the containment vessel.
Gas core reactor. A closed loop version of the nuclear lightbulb rocket, where the fissile material is gassious uranium-hexafluoride contained in a fused silica vessel. A working gas (such as hydrogen) would flow around this vessel and absorb the UV light produced by the reaction. In theory, using UH6 as a working fuel directly (rather than as a stage to one, as is done now) would mean lower processing costs, and very small reactors. In practice, running a reactor at such high power densities would probably produce unmanageable neutron flux.
Gas core EM reactor. As in the Gas Core reactor, but with photovoltaic arrays converting the UV light directly to electricity.
Fission fragment reactor.

Read More.....!

Generation IV Reactors

Generation IV reactors are a set of theoretical nuclear reactor designs currently being researched. These designs are generally not expected to be available for commercial construction before 2030. Current reactors in operation around the world are generally considered second- or third-generation systems, with the first-generation systems having been retired some time ago. Research into these reactor types was officially started by the Generation IV International Forum (GIF) based on eight technology goals. The primary goals being to improve nuclear safety, improve proliferation resistance, minimize waste and natural resource utilization, and to decrease the cost to build and run such plants.[5]

Gas cooled fast reactor
Lead cooled fast reactor
Molten salt reactor
Sodium-cooled fast reactor
Supercritical water reactor (SCWR)
The Supercritical Water-cooled Reactor combines higher efficiency than a GCR with the safety of a PWR, though it is perhaps more technically challenging than either. The water is pressurized and heated past its critical point, until there is no difference between the liquid and gas states. An SCWR is similar to a BWR, except there is no boiling (as the water is critical), and the thermal efficiency is higher as the water behaves more like a classical gas. This is an epithermal neutron reactor design.
Very high temperature reactor

Read More.....!

Advance Technology

More than a dozen advanced reactor designs are in various stages of development.[3]Some are evolutionary from the PWR, BWR and PHWR designs above, some are more radical departures. The former include the Advanced Boiling Water Reactor (ABWR), two of which are now operating with others are under construction, and the planned passively safe ESBWR and AP1000 units (see Nuclear Power 2010 Program).

The Integral Fast Reactor was built, tested and evaluated during the 1980s and then retired under the Clinton administration in the 1990s due to nuclear non-proliferation policies of the administration. Recycling spent fuel is the core of its design and it therefore produces only a fraction of the waste of current reactors. The link at the end of this paragraph references an interview with Dr. Charles Till, former director of Argonne National Laboratory West in Idaho and outlines the Integral Fast Reactor and its advantages over current reactor design, especially in the areas of safety, efficient nuclear fuel usage and reduced waste.[4]
The Pebble Bed Reactor, a High Temperature Gas Cooled Reactor (HTGCR), is designed so high temperatures reduce power output by doppler broadening of the fuel's neutron cross-section. It uses ceramic fuels so its safe operating temperatures exceed the power-reduction temperature range. Most designs are cooled by inert helium, which cannot have steam explosions, and which does not easily absorb neutrons and become radioactive, or dissolve contaminants that can become radioactive. Typical designs have more layers (up to 7) of passive containment than light water reactors (usually 3). A unique feature that might aid safety is that the fuel-balls actually form the core's mechanism, and are replaced one-by-one as they age. The design of the fuel makes fuel reprocessing expensive.
SSTAR, Small, Sealed, Transportable, Autonomous Reactor is being primarily researched and developed in the US, intended as a fast breeder reactor that is passively safe and could be remotely shut down in case the suspicion arises that it is being tampered with.
The Clean And Environmentally Safe Advanced Reactor (CAESAR) is a nuclear reactor concept that uses steam as a moderator - this design is still in development.
Subcritical reactors are designed to be safer and more stable, but pose a number of engineering and economic difficulties. One example is the Energy amplifier.
Thorium based reactors. It is possible to convert Thorium-232 into U-233 in reactors specially designed for the purpose. In this way, Thorium, which is more plentiful than uranium, can be used to breed U-233 nuclear fuel. U-233 is also believed to have favourable nuclear properties as compared to traditionally used U-235, including better neutron economy and lower production of long lived transuranic waste.
Advanced Heavy Water Reactor — A proposed heavy water moderated nuclear power reactor that will be the next generation design of the PHWR type. Under development in the Bhabha Atomic Research Centre (BARC).
KAMINI — A unique reactor using Uranium-233 isotope for fuel. Built by BARC and IGCAR Uses thorium.
India is also building a bigger scale FBTR or fast breeder thorium reactor to harness the power with the use of thorium.

Read More.....!